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We report here on progress in the automation of the derivation of dispersion relations 
in plasma physics using symbolic manipulation by computer. The techniques developed 
to date should have application to a wider class of problems, viz., modal analysis of 
linearized partial differential equations in various branches of physics. The analytic 
approach can be used exclusively by minor changes in programming but we have found 
it convenient to use symbolic manipulation as an aid to automatic programming for 
dealing with physical problems. 

The programs include: VECTORS which converts vector equations into scalar ones, 
ORDERS which performs perturbation expansions and elementary Fourier analysis, 
DETERM which calculates secular determinants, and PARAM which performs matrix 
augmentation and truncation required in the analysis of parametric instabilities. 

Two examples are given. In the first the instabilities of relativistic &layers are in- 
vestigated and in the second we look at the instabilities of an electron beam in a spatially 
varying magnetic field. 
PL/I-FORMAC was the programming medium used. 

1. INTRODUCTION 

Our knowledge of the behavior of the plasmas is based to a great extent on the 
results of analyses of the linearized differential equations governing the fields and 
the charged fluids comprising plasmas. Among the several processes involved in 
such analyses are: 

(a) linearization about equilibrium conhgurations usually with (implicit) 
resolution of vectors into components, 

(b) Fourier (or more generally, modal) analysis, 

(c) calculation of the secular determinant of the resulting linear, algebraic 
equations, 

(d) treatment of mode-coupled equations including truncation. 

* This work supported by the National Science Foundation Grant No. GJ-32260. 
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COLD PLASMA CASE 

In this paper we shall present a description of four computer programs that carry 
out these operations a~zalytically and thus relieve the physicist from much of the 
tedious routine work involved in the derivation of dispersion relations (secuiar 
equations)), In general the appropriate combination of programs is run in 
succession, the output of the first becoming part of the input for the second; etc. 
Each of the programs, all of which are written in FORMAC-FIJI, [l-2] is useM 
in its own right; together they can carry out the processes mentioned above So3 
problems involving “cold” plasmas. In more mathematical terms the restriction is 
one to equations in which the independent variables are the space-time coordinates. 
In physical terms it means that a fluid description rather than a full kinetic tres:- 
ment is used. This level of description is very useful within its domain of vaiidity 
A more complete kinetic description given by use of the Vlasov equation is treat& 
in the next paper in this series. (We shall refer to this as (II).) 

In the next section we shall briefly describe the operation of each program and 
in the following two sections we shall illustrate Their tise by two examples. 1~ ah3 
first we derive the secular equation for azimuthal density fluctuations in a {tin, 
relativistic E-layer [3]. Secondly, and in more detail, we investigate the instability 
of an electron beam subject to a magnetic field of constant magnitude whose 
direction varies sinusoidally in space [4]. These two problems arose during discus- 
sions with colleagues as interesting in their owp?_ right. During the period of t%s 
work the E-layer problem has been treated elsewhere [5]. Both problems involve 
electromagnetic instabilities; the first involves cylindrical geometry 2nd the second 
exhibits features of the so-called parametric instabilities. In conclusion then there 
is reason to believe that these problems are in some sense representative. 

2. DESCRIPTION OF COMPUTER PROGRAMS 

We shall discuss four programs which, together with their ftinctions, are: 

VECTORS-converts vector quantities and scalar uantities formed ikom 

vectors into component form, 

ORDERS-carries out perturbation expansion and conversion to algebraic 
form by Fourier or modal analysis, 

DETERM-calculates the secular determinant corresponding to the set of 
linear algebraic equations generated -by ORDERS 

PARAM-first it augments the equations for the dependent variables at 
the nominal frequency and wavenumber (w, k) by those equations governing the 
modes to which these variables are coupled by virtue of the temporal and/or 
spatial variations of the zeroth order fields and then it truncates the matrix of 
coefficients appropriately. 
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In this section we present a brief description of these programs; a further 
discussion of the first three is found in Appendix A, and of the program PARAM in 
Section 4. The operation of the first three routines is illustrated in this section by 
their application to a well known problem, viz. propagation of electromagnetic 
waves in an electron plasma containing a uniform magnetic field [6]. The inputs 
and outputs are summarized in Table I. The equilibrium electron space charge is 
neutralized by an immobile positive background. The relevent equations are 

(1) the equation of motion of the electrons 

g+(s);= -$(E+v? x i); 

(2) Poisson’s equation 

V . B = 4ire(n, - n); 

(3) the Maxwell equations 

“Ezcvxg 
at - 47r7, 

all 
at= -cc x z-. 

We have used V for the electron (fluid) velocity, n is the electron density, l? and i 
are the usual electric and magnetic-induction field strengths respectively, e is the 
magnitude of the electron charge, r?z is the mass of the electron and c is the speed 
of light. The current density; is given by - rze7j: NoteJhat there are ten dynamic 
variables, viz. the three components each of Z, E, and B and the density for which 
we have written down the equivalent of ten scalar equations. 

In general the wave vector of the electromagnetic waves in our example may 
have one component along the direction of the field (x-direction) and one com- 
ponent perpendicular (JJ-direction) so that all dynamical variables are independent 
of the third coordinate. 

A. The program VECTORS [7, 81 recognizes the standard operations of 
vector analysis-DOT, CROSS, GRAD, CURL, and DIV as well as the operation 
involved in the construction (A . V) B, (A, B vectors). We call this ADVECT. 
Terms involving these operations are converted into components for a given 
orthogonal coordinate system in terms of the scale factors. In the case of Cartesian, 
cylindrical, or spherical coordinates the scale factors are replaced by their values. 
In other cases the scale factors can be left unspecified or can be given explicit 
values as the user desires. 
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COLD PLASMA CASE gj1’ 

The method of conversion is programmed in a recursive manner so that any 
number of the operations listed above can be nested (in principle). Thus the form: 
CURL. CURL. (CROSS. (A, B)) is quite acceptable input. Prefix notation is ~332 
for the binary operations CROSS, DOT and ADVECT. 

The program can be used to provide symbolic ourput necessary for further 
formula manipulation as it is here or to provide part of a FORTRAN program 
for numerical evaluation of the components of the vector equation 

B. ORDERS [Yj performs the perturbation expansion of the equations 
governing the physical situation as weli as the conversion from differential “ii: 
modal form. It is an extension of a program written to carry out orderings on a set 
of equations. It does so by forming an expansion of each dependent variable in a 
power series in the ordering parameter, substituting such series into th.e differell,saI 
equations and then collecting terms. Provisions exist r’or the specification of the 
ordering of parameters occurring in the equations as well as for the ordering of the 
space-time dependence of external fields present in the equations. 

Modal analysis capability is provided in that one can specify the behavior of ;ihe 
perturbative field amplitudes on the coordinates as in 

Terms that involve products of the dependent variables and,/or external nelds are 
replaced by convolution-type terms in which a summation convention is understood 
to be in effect. Products are recognized by the fact that their !ogarithmic deriva-,iv:s 
are sums. 

The perturbation calculation is by no means restricted to first order, The output 
of the program is the set of differential equations obeyed by iower order equilibria 
and the transformed equations obeyed by the perturbation amp’uitudes. The lower 
order equilibrium equations are ?zot solved by these programs, and, in fact, since 
they are often nonlinear, no effort has been made to aMGil?ate their use in higher= 
order equations. (In (If) we shall discuss this replacement p!obIem 4n more detail.‘; 
As a side effect of orders the matrix of coefficients of each of the p~r:urbative 
amplitudes in the several equations is also provided. 

6. The routine DETERM calculates the determinant OF i 8 square :~~ztr$; _ 
using the Eaplace expansion. When used in conjunction with ORDERS it wiii 
produce a term by term expansion of the secular equation (a po!ynom:al in these 
cases). (For plane wave behavior of the perturbed fields usually employed ‘&is is a 
dispersion relation.) The output terms are segregated as to the power of c;) occurring 
in the terms. If desired the program will also produce part of a ~~RTR~~-cod~d 
program for the numerical evaluation of the coefficients of the (p3lynomiaI> 
secular equation which can be used with a standard root-finding program. !E 
dealing with determinants of large order the analytic form of the secular deter- 
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minant often is not useful; DETERM is probably most useful when the order is 
between 3 and 8. 

D. The PARAM routine generates equations satisfied by the mode ampli- 
tudes at (o + nzwO , k + nk,) from those at (w, k) when ilz and n range over 
integer values as designated by input data. It is necessary to consider these mode 
amplitudes when dealing with mode-coupling problems. This is simply accom- 
plished by means of the FORMAC REPLACE function which replaces a 
specihed quantity, say W. (1) by another such as (W.(l) + WO), in a given expres- 
sion. In order to deal with a finite matrix of coefficients one must truncate the 
infinite chain of mode coupled equations. Removal of mode-amplitudes which lie 
beyond the range of truncation from the equations (for example, the mode am- 
plitude fi(w + (m -+ 1) w,,) which might be in the equation for &w + mwJ) is 
done automatically by including FORMAC STEP functions in appropriate terms. 
(The STEP function is unity for a user-specified domain and is zero elsewhere.) 

The implied convolutions which appear in the input equations were handled on 
a somewhat ad hoc basis. First, the replacements wQ --f w1 - w2 and k, -+ k, - k, 
were made. Some of the Fourier components had (Dirac) delta function behavior 
and hence the remaining convolutions quickly collapsed to a few terms. 

3. APPLICATION TO RELATIVISTIC E-LAYER 

We shall give an application of these programs to the calculation of the instability 
of a thin relativistic E-layer against azimuthal perturbations in the electron density. 
This calculation serves as an example and we make no claim to completeness or 
to originality. The equations governing the model are shown (Fig. 1) in the form in 
which they are “fed” into the computer. The first two are the relativistic equations 
of motion of the electron fluid. The ion motion is ignored. The quantity a is w,R/c 

axmmAlFSYSTEi=‘~ilDRI~ 

‘NI’ ‘NE’ ‘l3bIl.A’ ‘“7 VB’ 7s’ 

’ (B1. ($) ,O) ’ (BZ. ($1 ,O) ’ ’ cE3. ($1 ,O) ’ ‘ho. is) ,O) ’ 

‘rx2mV. (Gwa,T) + DYI!. (V,GmD. (mT”st))/m + l,‘L2wmo*m. (V,E) ’ 

‘DRVIV. (mNUPV,T) + E/GM&O i CFGS. W,B),‘AW~ + AD-. (V,GAPMA*O),‘ALP~’ 

‘DIV. (E) + (NE-XI) *1IpHA’ 

‘rn. (E) + DRVW. (e,T)*c?AI”mo’ 

‘IiEw-D-. (E,T) + Gwt%‘ALPHA**5*C. (61 ’ 

‘INmIST = m,PHI,m,T)~ 

FIG. 1. Equations forming part of input to VECTORS. 



where wp is the e!ectron plasma frequency and k is the eq~libr~~m radius of the 
iayer; ?fO is the equilibrium value of y. The next three equations are Maaweh 
equations; the div(B) equation is satisfied identically in the model. 

As can be seen in the figure we have specified a cylindrical coordinate system 
(r, 4, z). The line of input just above the equations states that the field cornnone& 
4.4” 2 & 5 E, 9 and 2rJ are zero; the line after the equations states that :he field 
quantities are to be functions of T, 4, and t but not ;. 

The input to ORDERS is the output from VECTORS together with additional 
information, some of which is shown in Fig. 2. The first line t.here states that i& is 

‘(ES?. ($j, E2. OWLLr5~2)r5~3)7S(4)!!’ 

t (Ni. ($! ,mo. (S(l))!’ 

~~maxs = iSO)) 

to be taken as being independent of r and the following line states that the ion 
density, ~2; , is to be an unperturbed function of the radius alone. Following this 
we have given the assumed functional form of the perturbative amplitudes which 
is that the (4, t) dependence is given by exp[i(& - p+)] while the radial dependence 
is linear through the layer (with the exception of &). The fnnctioaal form of the 
radial dependence assumes that the perturbed variable vary iinearly across the 
layer, whose tliickness is a, starting from zero value at the inner radius of the Layer, 

FIG. 3. Growth rate for azimuthal density instability. 
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R#OVER#A denotes R/a. Finally the last line states the name of the dependent 
variables. The significance of the numbers following each such variable is that a 0 
denotes that the variable has a nonvanishing equilibrium value while a 1 signifies 
that the variable possesses only a perturbative (in this case, first order) amplitude. 

Figure 3 shows numerical results generated by the program that was in turn 
produced by the action of the three programs we have described here. We have 
plotted the growth rate of the fastest growing instability for the parameters in- 
dicated. 

4. INSTABILITY OF AN ELECTRON BEAM IN A DIRECTION VARYING 
TRANSVERSE MAGNETIC FIELD 

The problem we consider here is the (electromagnetic) instabilities of an electron 
beam which is moving with velocity vB transverse to a “spiral staircase” magnetic 
field given by 

B(O)(x) x BO[cos(k,x) Zv + sin&,x) 41, 

where the C’s are unit vectors while BO and k, are scalars. (If a vector representing 
the direction of the field were to be drawn from each point on the axis the locus of 
the tips would be a helix.) The zeroth order velocity of the beam is 

Y(O)(x) = e",VB - 2 (B(O'/BO), 
0 

where w, is the cyclotron frequency corresponding to BO. Y(O) satisfies 

y(o) . VJAO’ = - e (y(o) x B(O))* 
111 

In this treatment V, > w/k, by one order of magnitude so that J?,” is always 
greater than zero. 

In this case we used the equation of continuity rather than Poisson’s equation 
(the conservation of charge plus the Ampere-Maxwell law imply Poisson’s 
equation). This was done so that each of the equations is of “dynamical” form, 
i.e., of the form 

4 (dynamical variable) = terms without time derivatives. 
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-PI* 
14 j 

Consequently, after the equations are Fourier transformed, multiplied by --i and 
linearized they will have the structure 

where the matrix A4 depends on the parameters and on the wavenumber. The 
eigenvalues of M are then the possible frequencies of the system and the instabiiity 
we seek is the eigenvalue with the largest imaginary part. By reducing the problem 
to an eigenvalue problem we obviate the necessity of first calculating a deter- 
minant and then solving an algebraic equation Furthermore we find the e!.gen- 
vectors simuitaneously and so obtain the mode structure. 

ft. might be thought to be advantageous to eliminate several of the variables sc 
that the size of the algebraic system is reduced. We found that the resulting dencm- 
inators in expressions led to difficulties in obtaining a simple po!ynomiai dispersion 
relation. Furthermore the result of such operations lack the great simpiicity and 
directness of the matrix eigenvalue method. 

The input to VECTORS includes the equations of continuity, Newton’s equation 
of motion, Faraday’s law, and the Ampere-Maxwell law together wish the specificr- 
tion B, G 0. Furthermore the fact that perturbative quantities are functions of x 
and I alone are also part of the input data. 

Following the operation of the VECTORS routine ORDERS performed the 
requisite linearization together with the substitution 

for all first-order quantities. Nine nonzero scalar equations result; in some of these 
the fields (II, L’, E, B) at (w, k) are coupled to fields at (w, k & /co) by virtue of the 
functional form of B, and II,, . The equations generated by ORDERS together with 
the type of information indicated in Fig. 4 are the input to PARAM The de:t2 
functions act as Dirac delta functions and so the (implied) convolution integrals 
can be calculated by simple algebra. Equations for the mode amplitudes et 

~(NE.(~),NE,($(1),$(2),1)~~(O,Sl3~)I.~S(l))~U~T(;,$(?j))~ 

~(v).($),~.($(1),$(2),1)~~(0,$(3))+~~~~1,s(3))* 

~~(D~~.($(~)-KO)*~D.(K.(~)-KO)-D~~.($(~~~KO)~D.(K.(~)+RO))~ ' 
- - 

IheNwCaTfun~ionevaluates to zero ifits second ?Lrym?at, w.ich 'has the 

signifimnce of the order, matches its first arqtment. TheMx function is 

used for truncation. 

FIG. 4. Examples of input to PARAM. 
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(w, k + nk,), LOWtn<HIGH, are formed and the MOD functions, which are 
ultimately replaced by combinations of FORMAC STEP functions (see above), 
indicated in Fig. 4 are used to truncate the equations appropriately. 

The output of PARAM was the nonzero elements of the sparse matrix of coeffi- 
cients of the field variables. In this particular case the matrix was of dimension 27. 
The eigenvalues [lo] of the secular matrix were determined numerically and we 
plotted that value with the largest positive imaginary part in Fig. 5. Inspection of 

I 2 3 4 5 6 7 a 9 

kc/o+ - 

FIG. 5. Growth rate of beam instability. 

the corresponding eigenvectors revealed that the most unstable mode is 
predominantly a right-hand circularly polarized electromagnetic mode at wave- 
number k coupled to an electrostatic oscillation at wavenumber k + k, with almost 
no coupling to the mode at (k - k,). The results of this calculation which was 
essentially programmed from equations to numerical results has provided some 
insight into the mode structure so that we can now use a simplified analytic 
approach. 

We assume then that the mode at wavenumber k can be described in terms of a 
vector potential A and a transverse velocity only. Similarly the mode amplitude at 
k + k, is assumed to be well described in terms of a density fluctuation, a fluctuating 
velocity parallel to the x-axis and an electric field derivable from an electrostatic 
potential. 
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In terms of the variables: 

(in which the barred qu-antities are the usual ones>, we obtain the i’o;iowing results: 
For the mode amplitudes at k 

The equation of motion indicates that V = A; 
Faraday’s law is satisfied identically; 
the Ampere-Maxwell law can be written as: 

where 

the subscript i indicates perpendicularity to the x-axis and the superscript +- 
indicates that the quantity is evaluated at k + k, ~ At k + k, one has: the con- 
tinuity equation can be written as 

where d/dt = ajaT f &8/3X; 
combining Coulomb’s law with the Ampere-Masmeli law gives 

ClEi- 
7 = aV”; 

the equation of motion for the x-component of the velocity is 

dV+ 
-= --E-+--V,, x B- VL x BAov 
dT 

If we decompose A as 

A = (e,+ ie3 AR -/- (e, - iez) -4; 

and note that 
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we discover that within the approximation considered here the right-handed part 
of A, viz. AR , is coupled to the electrostatic oscillation at k + ko . The reason for 
this is as follows: V1, = - B,,/ko and therefore the nonlinear terms in the equation 
of motion for the longitudinal velocity can be written as 

- (kfkO)A xe” 
21~0 L 

-AR 

The density variations at k + k, contribute to the right-handed current at k because 
of the zeroth order transverse velocity. 

We find the dispersion relation to be 

cw’ - k’ - a)((~ - (k + k,) V’# - a) - & (k + ko)’ = 0. 
0 

The root of this quartic equation (for all values of k,/w, shown in Fig. 5,) with the 
largest positive imaginary part is numerically indistinguishable from the cor- 
responding eigenvalue of the 27 x 27 matrix. Thus, the simplified analytic 
approach, which was suggested by the numerical results, gives an excellent approxi- 
mation of the growth rate of this instability within the parameter range (e.g. large 

ko). 

5. CONCLUSION 

We have discussed the automation of several analytic steps that occur in the 
derivation of dispersion relations in plasma physics and have exhibited some 
applications of the techniques that have been developed to date. Our present 
feeling is that the method is most useful for the automatic programming of the 
numerical solution of these relations but is by no means restricted to this mode of 
operation. Indeed the production of a FORTRAN coded subprogram in which the 
coefficients occurring in the (polynomial) dispersion relation are expressed in terms 
of the various parameters is an analytic result which has been especially prepared 
for rapid numerical processing; one is free to try his analytic ability in obtaining a 
factored form of the dispersion relation. 

APPENDIX A. DESCRIPTION OF PROGRAM ALGORITHMS 

1. General Cornnzents 

a. FORMAC [l] syntax permits the use of a quantity called an unspecified 
function, i.e., analogous to the ordinary mathematical statement z = f(x, ~7) 
there is the FORMAC statement 

LET (2 = F . (X, Y)). 
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‘The number of arguments permitted is, in principle, arbitrary and furthermore the 
number of arguments attached to a given function name (such as F above) ia 
variable. One can consider that Z is a list (2’: Y) of type f;. In FBRMAC syntax F 
is the ARG(1, Z), X = ARG(2, Z) and Y = ARG(3, Z). In general the elememe 
of the list can be any construction acceptable on the right hand side of a LET 
statement. 

b. FORMAC variables are global since they are held on a list of so-called 
REPWORDS within the interpreter. In order to do recursive programming we have 
found it convenient to introduce an extra index into those variables which should 
be made local; this index is increased by unity each time a recursive routine is 
entered and similarly decreased upon exiting from that routine. If the recursive 
subroutines also use iteration, then some care must be given to the values of 
iteration indices which should be local PLD variables but which may have giobai 
FORMAC equivalents. 

VECTORS, after processing control information such as the number of scalar 
variables, the type of coordinate system, etc. accepts both scalar and vector 
equations in that order. Since vectors can occur within divergences or sca:ar 
products within a scalar equation all equations are scanned for the presence of 
“D8T.’ and ‘DIV.‘. If either is found each instance is converted to its expanded 
form in terms of components. Scalar equations are then converted f~ ““ordinary” 
form; vector eqntations are further processed. 

y ordinary form we mean that: 

(a) Spatial derivatives of vectors are represented in standard FORMAC 
syntax if symbolic output is desired and by finite ditferences if FORTRAN output 
is desired. 

(b) The components in a given vector, say A, will be calied r4_1, RZ, AS- In the 
symbolic mode, and say in spherical coordinates, -41, (R, THETA, PIG, T) etc. 

appear in the appropriate place. 

The vector equations are handled as follows: 

(a) The tensorial form (ith component) of the equation is generated with ali 
snmlmations explicitly carried out. 

(5) The explicit components are then cakuiated for t = I through ihe 
plumber of dimensions specified. 

(c) The equations are converted to ordinary form. 

The tecsorial form is generated by the action of two recursive routines V$ for 
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vectors and S$ for scalars. V$ searches for the occurrence of “CROSS.‘, ‘CURL.‘, 
‘ADVECT.’ and ‘GRAD.‘. For each such occurrence it passes the elements of the 
accompanying list to the appropriate function for further processing (V$ for the 
two “arguments” of CROSS AND ADVECT and for the single element following 
CURL and S$ for the single argument of GRAD). Similarly S$ searches for 
‘DOT.’ and ‘DIV.‘. The recursion ends when none of these special names are 
encountered. The derivatives implied by the CURL, DIV, and GRAD operations 
are indicated symbolically by use of another unspecified function called DIFFER. 
In conversion to ordinary form DIFFER is replaced by DERIV for FORMAC 
output and by finite differences of its first argument for FORTRAN-type output. 
Processing is done term by term so that routines are iterative as well as recursive. 
The cyclic and anticyclic permutation of the indices is indicated internally by the 
replacements I-+ RP.Q, I-+ &v.(o a la Symbolic ALGOL II. This our method 
of delaying evaluation which in ALGOL is effected by use of the call-by-name 
feature. The internal representation of a vector up to this point is of the form 
NAME. (INDEX) wherein NAME is the name of the vector and INDEX is I with 
an arbitrary number (including zero) of RP’s and RM’s acting upon it. 

The generation of components now follows simply by letting I run from 1 
through the number of coordinates. The conversion of (nested) RP and RM 
“function calls” is performed by repeated FORMAC replacements using the 
replacement CHAIN: (RM. (l), 3, RM. (2), 1, RM. (3), 2, RP. (l), 2, RP. (2), 3, 
RP. (3), 1). 

3. Orders 

a. Fourier “transformation” 

This program can do simple Fourier transforms of differential equations in the 
sense that replacements of the form: (we denote the function and its transform by 
the same symbol since no confusion can arise) 

This change is made in a term containing one such factor to be transformed by 
using the FORMAC statements: 

Let (TERM = F. (X, T); 

N= 2; 
NEWLIST = (K(N), W(N)); 

TERM = EVAL (TERM, F. ($), F. (NEW LIST)* 
EXP (#I*((K(N)* CW) - W - W(N)* CWJ - ‘UN); 



The last statement is obviously the key one and it is remarkable that this single 
FOWMAG statement by itself performs the replacements we have indicated. ‘The 
program is written so that NEWLIST and the exponential factor are supp?ied as 
data. 

During the replacement process terms are handled individual!y; if this term 
contains more than one factor which depends on time then we apply the EVAL 
statement above to each factor depending on time separately with the ccnvendoa 
that N now starts at 2 and increases by unity for each such factor. Thus 

F. (x2 T) + 6. (X, T)” 11. (X, T) -+ F, (K(I), W(I)) + G. (K(2), W(S))* 
I-I. (K(3), W(3)). 

There i.s the implication that integrals and/or summations over all k’s and w’s 
with index > 1 are to be carried out and that these summations are subject to the 
conditions that 

Let us denote by E (called # # # ff # # in the program) a dimensioniess pars- 
meter that is supposed to be of the iirst order of smallness. We define a given 
ordering of a differential equation(s) in the following manner: 

I. each parameter occurring in the equation(s) has its order of smaiiness 
defined by the (integer) power of E which its value approximates, 

ii. each dependent variable occurring has an expansion in E beginning at 
some power. 

As an example, assume that the equations, dependent variable names, etc. have 
been read in by the program. For example suppose that we have the following case 

and furthermore that a: N E, ,L3 N GI f = efl + ~55 + =I I ; g = go + egl + ... 
Also the maximum order we seek is given and is, say, four. The program 

(i) forms the sums 



114 BERNARD ROSEN 

(ii) replaces a by ORE and p by Be2 in the equations, 

(iii) substitute the sums indicated in (i) into the equations, and 

(iv) isolates the various orders in E by forming the appropriate derivatives 
with respect to E evaluated at E = 0. The author has found this method more 
reliable in general than the use of the COEFF function. 

If the FOURIER mode of this program is to be used then the quantities of ZOH+ZP 
order than the order which is being transformed do not necessarily have the full 
space-time dependence. For example, if we were looking at plasma oscillations the 
zeroth order density is a constant. This alternate dependence can be specified by the 
quantity FIXEDLST whose value is a data item. There is only one FIXEDLST; 
should this prove too restrictive there is an alternate way to introduce quantities, 
namely through FIELDS which behave like dependent variables except that their 
exact dependence and expansions must be specified. 

IV. Detem 

As stated in the main text the Laplace expansion is used for calculating deter- 
minants. The programming style is recursive with trails ending abruptly if a zero 
entry is encountered. Each term in the Laplace expansion is written out in 
FORTRAN code separately. The terms are segregated according to the power of a 
variable; this variable has a default name of ‘W’ but it can be changed by the input 
data to any other name such as ‘K’ so that the resulting FORTRAN code can be 
used to solve for k(o) rather than for w(k). 

In order to increase the efficiency of the resulting FORTRAN program a unique 
name (a FORTRAN variable such ‘as G231) is created for each element of the 
secular determinant. The elements of the determinants are written out in terms of 
these new FORTRAN variables so that the terms in the dispersion relation require 
the evaluation of the matrix elements per se only once per iteration. 
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